Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.086$
Data-to-parameter ratio $=7.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Maleopimaric acid trimethyl ester

The title compound, $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6}$, contains two fused cyclohexane rings with chair conformations, fused to a norbornene ring system. The ester groups that are attached to the norbornene unit are in a cis configuration. There are two molecules in the asymmetric unit. The structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds and van der Waals forces.

Comment

Maleopimaric acid (Zalkov et al., 1962) is a derivative of abietic acid, an important resin acid (Lee et al., 2001) used in materials processing, such as in surface active agents and paints. It is also a useful intermediate for natural product synthesis (Khlebnikova et al., 2004).

(I)

The title compound, (I), is an ester derivative of maleopimaric acid (Fig. 1). The asymmetric unit consists of two independent molecules. Each molecule contains two fused cyclohexane rings with chair conformations and a fused norbonene ring system. The C1-C6 and C28-C33 sixmembered rings display boat conformations. The H atoms on atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 5$ and C 11 in the first molecule and C28, C29, C32 and C38 in the second molecule occupy axial positions, which are similar to those in a derivative of abietic acid (Li et al., 2005). The ester groups at $\mathrm{C} 1 / \mathrm{C} 2$ and $\mathrm{C} 28 / \mathrm{C} 29$ are in cis positions as expected (Zalkov et al., 1962). The configuration about the $\mathrm{C} 7=\mathrm{C} 8$ and $\mathrm{C} 34=\mathrm{C} 35$ bonds in the two molecules is Z, where the H atom and the isopropyl group are cis. All the bond lengths and angles are in normal ranges (Allen et al.,

Received 24 June 2006
Accepted 15 November 2006

[^0]1987). In the crystal structure, the molecules are linked (Fig. 2) by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (Table 2) and van der Waals forces.

Experimental

Maleopimaric acid was prepared according to a literature procedure (Zalkov et al., 1962). To a 50 ml three-necked flask were added maleopimaric acid ($4.0 \mathrm{~g}, 4 \mathrm{mmol}$) and phosphorus trichloride (3 ml , $34.3 \mathrm{~mol})$. The mixture was stirred vigorously with a magnetic stirrer at room temperature for 4 h . After removing the solvent under vacuum, anhydrous methanol (20 ml) was added to the residue and refluxed for 3 h . The mixture was cooled to room temperature and then filtered. The colorless solid formed was recrystallized from ethanol (2.9 g , yield 63%, m.p. $375-377 \mathrm{~K}$).

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6}$

$M_{r}=460.59$
Monoclinic, $P 2_{1}$
$a=8.9848$ (15) \AA
$b=23.456$ (4) \AA
$c=12.364(2) \AA$
$\beta=108.804$ (3) ${ }^{\circ}$
$V=2466.6(7) \AA^{3}$

Data collection

Rigaku Mercury diffractometer

ω scans

Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\text {min }}=0.804, T_{\text {max }}=0.990$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.086$
$S=1.07$
4615 reflections
610 parameters
H-atom parameters constrained

$Z=4$

$D_{x}=1.240 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Plate, colorless $0.79 \times 0.60 \times 0.12 \mathrm{~mm}$

24150 measured reflections 4615 independent reflections 4475 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.3^{\circ}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0442 P)^{2}\right. \\
\quad+0.5815 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.41 \mathrm{e}^{\circ} \AA^{-3} \\
\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected bond lengths (\AA).

O1-C17	$1.205(3)$	O5-C25	$1.201(3)$
O2-C17	$1.348(3)$	O6-C25	$1.342(3)$
O3-C19	$1.203(4)$	C7-C8	$1.330(3)$
O4-C19	$1.344(3)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 11^{\mathrm{i}}$	1.00	2.47	$3.357(3)$	147
$\mathrm{C} 18-\mathrm{H} 18 C \cdots \mathrm{O}^{\text {ii }}$	0.98	2.56	$3.377(4)$	141
${\mathrm{C} 26-\mathrm{H} 26 C \cdots \mathrm{O} 1^{\text {iii }}}^{\text {C29-H29 } \cdots \mathrm{O} 5}$	0.98	2.51	$3.389(4)$	149
$\mathrm{C}^{\text {iv }}-\mathrm{H} 53 C \cdots \mathrm{O} 9^{\text {iv }}$	1.00	2.49	$3.386(3)$	150

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z$; (iii) $-x+1, y+\frac{1}{2},-z+1$; (iv) $-x+2, y-\frac{1}{2},-z+2$.

H atoms were positioned geometrically and included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.95$, $0.98,0.99$ and $1.00 \AA$ for aromatic, methyl, CH_{2} and CH groups,

Figure 1
The structures of the two independent molecules in the asymmetric unit of (I), showing the atom-labeling scheme and 50% probability displacement ellipsoids. H atoms are represented by small spheres of arbitrary radii.

Figure 2
Packing diagram for (I). Hydrogen bonds are denoted by dashed lines.
respectively, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl C) and $1.2 U_{\text {eq }}$ (other C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank the National Natural Science Foundation of China (No. 20362002, 20442005), the 100 Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institutions and the Science Foundation of Guangxi

organic papers

Province (No. 0575046) as well as the Foundation of Guangxi Universities, of the People's Republic of China.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jacobson, R. (1998). Private communication to the Rigaku Corporation.
Lee, H. J., Ravn, M. M. \& Coates, R. M. (2001). Tetrahedron, 57, 6155-6167.
Li, Y.-H., Ren, T.-R., Guo, J.-P. \& Liu, J.-C. (2005). Acta Cryst. E61, $04305-$ o4306.

Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan
Rigaku/MSC (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Khlebnikova, T. B., Karpyshev, N. N., Tolstikova, O. V. \& Tolstikov, A. G. (2004). Chirality, 16, 40-50.

Zalkov, L. U., Ford, R. A. \& Cutney, J. P. (1962). J. Org. Chem. 27, 35353539.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

